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ABSTRACT 

Fuzzy graph theory is crucial for dealing with uncertainty in everyday situations. In this paper, 

we provide a simple, flexible, and fundamental fuzzy network connected with a robustness model. We 

tend to deal with the examination planning disadvantage presented by this strategy. Randomness and 

unclearness are two separate types of knowing uncertainty. This research deals with all types of 

uncertainty in higher cognitive processes and links Robust Hybrid Fuzzy Graph. In this paper, we 

introduce a type of fuzzy graphs known as Robust Hybrid Fuzzy Graph, as well as some of its 

properties. A Robust fuzzy network is the best tool in evidence theory for computing belief functions, 

plausibility functions, spanning functions, and so forth. 
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Introduction 

It is quite well known that graphs are simply models of relations. A graph is a convenient way 

of representing information involving relationship between objects. The objects are represented by 

vertices and relations by edges. When there is vagueness in the description of the objects or in its 

relationships or in both, it is natural that we need to design a 'Fuzzy Graph Model'. 

Application of fuzzy relations area unit widespread and important; particularly within the field 

of clump analysis, neural networks, laptop networks, pattern recognition, decision making and 

professional systems. In each of those, the fundamental mathematical structure is that of a fuzzy graph. 

We know that a graph is a symmetric binary relation on a nonempty set V. Similarly, a fuzzy 

graph is a symmetric binary fuzzy relation on a fuzzy subset. The first definition of a fuzzy graph was 

by Kaufmann[1] in 1973, based on Zadeh's fuzzy relations [2]. But it was Goguen [3] who considered 

fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1968. During the same time 

R.T.Yeh and S.Y. Bang [4] have also introduced various connectedness concepts in fuzzy graphs. 

There are few works on fuzzy graph with robustness. However, there is no work, as per our 

data, that has incorporated strength associate degreed fuzzy graph in an integrated degreed fuzzy graph 

in an integrated manner for programming drawback. Works on strength in programming drawback is 

found in [9], [10], [11], [12]. Some works associated with fuzzy graph coloring are there in [8], [6], 

[7], [5]. 

The paper is organized as follows. Section 2 briefly reviews some basic definitions associated 

with fuzzy graph. In Section 3, we describe the robust hybird fuzzy graph model. Finally, we conclude 

in Section 4.   
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PRELIMINARIES Definition 2. 1 

A fuzzy graph G =  (V, µ , ρ) is a non empty set V together with a pair of functions µ ∶  V →
[0,1] and ρ ∶  V x V → [0,1] such that for all x, y in V,     ρ(x, y)  ≤  µ(x) Λ µ(y). 
We call µ the fuzzy vertex set of G and ρ, the fuzzy edge set of G respectively. 

Example 2.2 

Let G =  (µ, ρ ) be with µ ∗ =  {u, v, w, x} .  

Let  

µ(u)  =  0.7, µ(v)  =  0.8, µ(w)  = 1 ,    µ(x)  =  0.5, and  ρ(u, v)  = 0.6,
ρ(v, w)  =  0.8 , ρ(w, x)  =  0.3 , ρ(x, u)  = 0.5 and ρ(u, w)  = 0.4. 

Then G is a fuzzy graph since ρ(u, v)  ≤  µ(u) Λ µ(v) for all u,v in µ ∗. 

Definition 2.3 

The  fuzzy  graph  H =   (ν, τ)  is  called  a  partial  fuzzy  subgraph  of              G  =
  (µ, ρ)  if  ν ⊆  µ and τ ⊆  ρ. 

Definition 2.4 

 The fuzzy graph H =  (P, ν, τ) is called a fuzzy subgraph of G =  (V, µ, ρ) induced by P if P ⊆
 V, ν(x)  =  µ(x) for all x ϵ P and τ(x, y)  =  ρ(x, y) for all x, y ϵ P. 
A single node is considered as a trivial path of length 0. 

Definition 2.5 

The strength of a path is the weight of the weakest edge of the path. 

Example 2.6 

Let G =  (µ, ρ) be with ρ ∗ =  { u, v, w, x}. Let ρ(u, v)  = 0.2, ρ(v, w) = 0.2, ρ(w, x) =
0.3, ρ(x, u) = 0.5 and ρ(u, w) = 0.4. 

In G, C1 = u, v, w, x, u is a fuzzy cycle as it contains two weakest arcs namely arcs (u,v)and (v, 

w) whereas C2= u, w ,x, u is not a fuzzy cycle. 

 

Definition 2.7 

Let G =  (µ, ρ) be a fuzzy graph. The strength of connectedness between two vertices x and y 

is defined as the maximum of the strengths of all paths between x and y and is denoted by 

CONNG(x, y). An x-y path P is called a strongest x-y path if its strength equals CONNG(x, y). 

Definition 2.8 

An f-graph G =  (µ, ρ) is connected if for every x,y in ρ ∗, CONNG(x, y)  > 0. If G is 

disconnected, maximal connected fuzzy graphs are called components. If G is connected, any two 

vertices are joined by a path. An arc (x,y) of a fuzzy graph G is normal if and only if ρ(x, y)  =
 CONNG(x, y). 

Definition 2.9 

Complete fuzzy graph (CFG) is an f-graph G =  (µ, ρ)                                  such that ρ(x, y)  =
 µ(x) Λ µ(y) for all x and y. 

Definition 2.10 

Evidence theory is based on two dual non additive measures: belief measures and plausibility 

measures. 

Given a universal set X, assumed here to be finite, a belief measure is a function Bel: (X)  →
 [0,1] such that Bel(ϕ)  = 0, Bel(X)  = 1 and 
Bel(A1 ∪  A2 ∪  A3. . . .∪  An) ≥  ∑j Bel(Aj )– ∑j < k Bel(Aj ∩  Ak)+. . . . . . + (−1)n +

1                   
∑j Bel(A1 ∩  A2 ∩ … ∩  An)                           

 for all possible families of subsets of X. 

For each Aϵ(X), Bel(A) is interpreted as the degree of belief based on available evidence that a 

given element of X belongs to the set A. Belief measures are superadditive and when X is infinite, 

continuous from above. 

Definition 2.11 

A plausibility measure is a function PI: (X)  →  [0,1] such that PI (ϕ)  = 0, PI(X)  = 1, and 
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PI(A1 ∩ A2 ∩ A3. . .∩ An)  ≤  ∑j P(Aj) – ∑j < k PI(Aj ∪  Ak)+. . + (−1)n + 1∑j PI(A1 ∪  A2 ∪

… ∪  An)  

for all possible families of subsets of X. 

Definition 2.12 

Belief and plausibility measures are characterized by a function                       m: (X)  →  [0,1] 
such that m (ϕ) = 0 and ∑𝐴∈𝒫(𝑋) 𝑚(𝐴) = 1 . This function is called basic probability assignment. 

For each 𝐴 ∈ (𝑋), the value m(A) expresses the proportion to which all available  and relevant 

evidence supports the claim that a particular element of 𝑋, whose characterization in terms of relevant 

attributes is deficient , belongs to the set A. 

 

Robust Hybird Fuzzy Graph (RHFG) 

Definition 3.1  

Let X is a crisp set. A robust hybird fuzzy graph is a non- empty set               V =  𝒫(X)\ ψ 

together with a pair of functions m ∶  V →  [0,1] and δ: V x V → [0,1] such that for all A, B ∈
 V, (A, B)  ∈  δ, whenever A ⊆  B and                                δ (A, B)  = m(A) Λ m(B). 

Also ∑𝐴∈𝑉 (𝐴)=1. RHFG can be denoted by G = (V, m, ρ) ,where m is called the assignment 

function and δ is called the edge function. 

Theorem 3.2 

Robust hybird fuzzy graph is a fuzzy graph. 

Proof 

Proof is evident from the definition of robust hybird fuzzy graph. 

Theorem 3.3 

Number of vertices of a robust hybird fuzzy graph corresponding to a crispest X with n elements 

is 2n 
− 1 

Proof 

Let G =  (m, δ)be the robust hybird fuzzy graph. Then by the definition, V =  (X)\ ψ is the 

vertex set. So the number of vertices is 2n 
− 1. 

Theorem 3.4 

Number of edges of a robust hybird fuzzy graph corresponding to a crisp set with n elements is 

(∑(n − 1)Ci) nCn−1 +  (∑(n − 2)Ci) nCn−2 +  … … … … … … + n

n−2

i=1

 

n−1

i=1

 

Proof 

Proof is the consequence of set theory. 

Let us start with singleton sets. Every vertex corresponding to singleton sets is adjacent to all the 

vertices corresponding to their supersets - 2-element sets, 3-element sets etc. 

{a} → {a, b}, {a, b, c}, {a, b, c, d}. . . . . . . . 
This can be done in (∑ (n − 1)Ci 

n−1
i=1 ways. 

The number of singleton sets for a set with n elements is n or nCn−1 

So the total cases corresponding to singleton sets is 

(∑(n − 1)Ci 

n−1

i=1

) nCn−1 

 

The vertices corresponding to 2-element sets is adjacent to all vertices corresponding to all vertices 

corresponding to their super sets - 3-element sets, 4-element sets etc. 

{a, b} →  {a, b, −}, {a. b, −, −}, {a, b, −, −, −} etc. 

Theorem 3.5 

Robust hybird fuzzy graph is complete 

Proof 

          A complete fuzzy graph is a fuzzy graph G = (V, m, δ) such that        δ(x, y) = m(x)Λ m(y) 
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for all x and y. So by definition every robust hybird fuzzy graph is complete. 

Theorem 3.6 

  There does not exist an edge (A,B) such that δ (A, B)  = 1 in a Robust Hybird fuzzy graph    

G = (m, δ) 
Proof 

If possible, suppose that there exist an edge (A,B) such that δ (A, B)  = 1 

⇒ m(A) = m(B) = 1 by the definition of RHFG. 

⇒ ∑𝑖 (𝐴𝑖)≠1, a contradiction. 

Definition 3.7 

The fuzzy graph H = (n, τ) is called a partial Robust fuzzy subgraph of G = (m, δ) if n(A)  ≤
 m(A) for all A and τ(A, B)  ≤  δ (A, B) for all A ,B such that A⊆ B 

The fuzzy graph H = (P, n, τ) is called a robust fuzzy subgraph of               G =  (V, m, δ) 

induced by P if P ⊆  V, n(A)  =  m(A), τ(A, B)  =  δ (A, B) for all A , B such that A ⊆ B. 

Proposition 3.8 

The partial Robust fuzzy subgraph and Robust fuzzy subgraph of an RHFG need not be a RHFG  

Proof 

          For a partial robust hybird fuzzy graph and robust hybird fuzzy graph, ∑𝑖 (𝐴𝑖) equal to 1.  

But ∑𝑖 (𝐴𝑖) ≤ 1. 

Theorem 3.9 

The partial robust fuzzy subgraph of an RHFG is an RHFG if and only if m(A)  =
 n(A) for all A and τ(A, B)  =  δ (A, B) for all A, B. 
Proof 

Let G be a RHFG .  

By definition ∑ (i Ai)  =  1. 

Let H = (n, τ) be a partial robust fuzzy subgraph of G. 

For a partial Robust fuzzy subgraph H= (n, τ) of G = (m, δ), n(A)  ≤  m(A) for all A and τ(A, B)  ≤
 δ (A, B). 

But ∑ n(i Ai)   ≠  1 if n(A)  <  m(A).So n(A)  =  m(A) for all A which implies τ(A, B)  =
 δ (A, B) for all A, B. 
Converse is obvious. 

Definition 3.10 

The vertex in a robust hybird fuzzy graph which is adjacent from every other vertex is called 

complete vertex. 

Definition 3.11  

            In an RHFG G = (m, δ), a path P of length n is a sequence of distinct vertices A0, A1, . . . . . An  

such that δ (Ai − 1, Ai) > 0, Ai − 1 ⊆ Ai, i = 1,2, … … . n and the degree of membership 

of the weakest arc is its strength. 

 

Theorem 3.12 

Maximum length of a path P in a RHFG with n vertices is n-1. 

Proof 

          Consider a RHFG with n vertices A0, A1, . An. Start from an arbitrary vertex Ai. Since there are 

only n − 1 vertices remaining, choose a vertex Aj such that   ρ(Ai, Aj)  > 0, Ai ⊆ Aj, i ≠  j.Similarly 

choose a vertex Ar from the remaining n − 2 such that ρ(Aj, Ar)  > 0, Aj ⊆ Ar, and so on. Since there 

are only n distinct vertices the process must terminate at a vertex Ap such that, 
ρ(Ap − 1, Ap)  > 0, Ap − 1 ⊆ Ap, p <  n. 

We get the sequence Ai, Aj, − − − − Ap which is of length less than n and equal to n − 1 only if every 

vertex is ordered by the relation ⊆. 

 

Theorem 3.13 

RHFG does not contain cycles and so fuzzy cycles. 



115                                                        JNAO Vol. 14, Issue. 2, No. 1 : 2023 

 

Proof 

Since in a RHFG G =  (V, m, δ), for all A, B ∈  V, (A, B)  ∈  δ whenever A ⊆  B there will not be 

an edge (B,A) and so a cycle. 

Definition 3.14 

The vertex A such that m(A)  ≤  m(B) for any B is called arc is called weakest vertex. The arc 

(A,B) determined by the weakest vertex is called weakest arc. 

An RHFG can have more than one weakest vertices and weakest arcs 

Definition 3.15 

 A robust hybird fuzzy graph G =  (V, m, ρ) is evidently connected if for every A, B in V with 

A ⊆  B, CONNG (A, B)  >  0. 

Two vertices A and B such that A ⊆  B or B ⊆  A are evidently connected if there exist an edge 

(A,B) or (B,A) . 

Proposition 3.16 

RHFG is always disconnected 

Proof 

For X =  {x, y} there does not exist a path between x and y. 

Definition 3.17 

Consider the Robust fuzzy matrix MG = (mAB) of G =  (m, δ),                     where mAB =

 m(A, B) 𝑖𝑓 𝐴 ⊆ 𝐵 𝑎𝑛𝑑 0 𝑜𝑡h𝑒𝑟𝑤𝑖𝑠𝑒. 

The matrix MG
k such that  MG

k  =   MG
k+1 where k is a positive integer is called the evidence 

reachability matrix of G denoted by RG = (rAB) 

 Definition 3.18 

Two vertices A and B of a robust hybird fuzzy graph is said to be mutually disconnected if there 

is neither an edge (A,B) nor (B,A). 

The vertices A and B are mutually disconnected. 

Proposition 3.19 

Belief and plausibility measures of a complete vertex are always one. 

 

Conclusion 

In this paper, we create a brand-new type of fuzzy network known as a robust hybird fuzzy 

graph. Completeness, routes, connectivity, and other traits are among them. We also explore how fuzzy 

graphs may be used in robust theory to determine belief measures, plausibility measures, and other 

parameters under uncertain conditions. We can calculate belief measure using RHFG as Bel(A)  =
 m(A)  +  ∑B m(B), (B, A) is an edge; where m(A) is the degree of the vertex A in RHFG. 
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